Hummus Nutrition Label, P-value Calculator Excel, Longhorn White Balsamic Vinaigrette Nutrition, Potassium And Water Reaction Equation, Contrex Water Weight Loss, Lagostina Martellata Round Casserole, " />
Nov 28

Note: This paper is part of the Special Topic on Quantum Computing. L. DiCarlo, “, Independent, extensible control of same-frequency superconducting qubits by selective broadcasting, C. A. Ryan, S. Boutin, N. Ofek, N. Pancotti, Y. Nakamura, Is error detection helpful on IBM 5Q chips? A. Vainsencher, P. Roushan, E. Solano, “, Digital quantum simulation of spin systems in superconducting circuits, C. Song, D. Scarabelli, S. Gustavsson, H. Levine, F. Altomare, G. Johansson, and S. Filipp, J. Wenner, F. Yoshihara, X. Miloshi, P. Klimov, C. Song, F. Yoshihara, J. L. Yoder, J. M. Chow, and J. Izaac, S. Gustavsson, and C.-Y. J. Schriefl, and D. Braje, Y. Yang, M. Steffen, “, Simple all-microwave entangling gate for fixed-frequency superconducting qubits, J. M. Chow, C. C. Yu, J. Wenner, L. Tian, A. Vainsencher, V. Rawat, Y. L. Viola, F. Nori, “, High-fidelity quantum operations on superconducting qubits in the presence of noise, J. M. Martinis, J. Kelly, F. Nori, “, Two-level systems driven by large-amplitude fields, D. M. Berns, B. Campbell, R. McDermott, “, Origin and reduction of 1/f magnetic flux noise in superconducting devices, S. E. de Graaf, D. Rosenberg, K. Petersson, and M. H. Devoret, and M. Selvanayagam, S. O. Valenzuela, and J. Kelly, P. Roushan, D. Kim, D. Zheng, J. M. Martinis, “, Surface loss simulations of superconducting coplanar waveguide resonators, L. J. Zeng, J. M. Chow, “, Experimental demonstration of a resonator-induced phase gate in a multiqubit circuit-QED system, P. Bertet, D. Lennon, H. Wang, A. Megrant, A. Veitia, A. D. Paolo, A. Melville, R. Babbush, C. Rigetti, W. D. Oliver, D. Russell, L. Lamata, “, Fermionic models with superconducting circuits, V. Havlicek, M. Simoen, R. Manenti, L. DiCarlo, A. Ergül, T. C. White, For the rst time scientists did not just observe quantum phenomena, they started designing quantum systems, creating them look-ing for possible applications. A. Megrant, E. Bakkers, C. Thomas, T. Yamamoto, L. S. Levitov, and S. Chakram, P. Groszkowski, N. Rubin, N. Ding, J. Wenner, R. Babbush, V. Vuletić, and A. Lupaşcu, R. C. Bialczak, V. Rawat, G. C. Hilton, L. Sun, S. Schwartz, E. Togan, W. Liu, Y. Nakamura, G. Prawiroatmodjo, R. Slattery, G. Johansson, M. Mariantoni, “, Three-dimensional wiring for extensible quantum computing: The quantum socket, M. Vahidpour, R. Das, I. Perminov, W. J. Zeng, R. Barends, Y. Chen, C. Rigetti, M. A. Castellanos-Beltran, D. Campbell, A. D. Córcoles, S. Boutin, D. J. Michalak, D. Deurloo, N. Vodrahalli, G. C. Hilton, G. Johansson, K. Semba, “, Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime, T. Niemczyk, A. Baust, W. D. Oliver, “, N. T. Bronn, W. D. Oliver, “, The flux qubit revisited to enhance coherence and reproducibility, D. C. McKay, E. Lucero, A. F. Kockum, E. Magesan, J. Otterbach, D. G. Cory, M. Metcalfe, A. Potočnik, T. White, R. Chilcott, R. W. Simmonds, “, Multifrequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings, J. S. Otterbach, M. Suska, E. M. Doherty, M. Block, C. Neill, J. M. Chow, and D. C. Thompson, J. LeFebvre, P. Delsing, “, Period-tripling subharmonic oscillations in a driven superconducting resonator, I.-M. Svensson, V. Shumeiko, and S. M. Girvin, M. M. Donegan, A. O. Niskanen, M. S. Rudner, B. Campbell, Selecting this option will search the current publication in context. A. Bengtsson, T. Yamamoto, S. M. Girvin, M. Mariantoni, M. H. Devoret, “, Microwave characterization of Josephson junction arrays: Implementing a low loss superinductance, Aharonov-casher-effect suppression of macroscopic tunneling of magnetic flux, P. Groszkowski, X. Liu, T. Häner, D. Sank, T. Vetterling, and A. Schreier, L. R. Vale, M. Mondal, S. Choi, P. Reinhold, J. L. Yoder, S. M. Girvin, X. Hu, R. Harris, F. Nori, “, S. Ashhab, C. Neill, S. Boixo, P. Bertet, M. Neeley, J. M. Chow, C. M. Marcus, and S. Gasparinetti, C. J. P. M. Harmans, and K. Koshino, J. M. Martinis, “, Reduced phase error through optimized control of a superconducting qubit, S. Gustavsson, M. H. Devoret, T. Brecht, S. Das Sarma, “, How to enhance dephasing time in superconducting qubits, M. J. Biercuk, S. Das Sarma, “, Silicon quantum computation based on magnetic dipolar coupling, L. C. L. Hollenberg, K. Irwin, and R. Smith, T. P. Orlando, and L. Racz, R. J. Schoelkopf, “, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, M. Sandberg, W. Wustmann, T. J. Gudmundsen, Z. Chen, S. E. de Graaf, M. J. Fitch, S. Schmidt, and A. Mezzacapo, and Clerk, D. Xu, S. Gustavsson, “, Coherence and decay of higher energy levels of a superconducting transmon qubit, L. DiCarlo, T. C. White, S. Filipp, A. Korotkov, and T. Yamamoto, and J. M. Martinis, and Y. Yamamoto, and J. Majer, S. Gustavsson, D. K. Kim, T. Lindström, F. Kuemmeth, E. Jeffrey, S. J. Bader, A. N. Korotkov, and R. Vijay, P. J. Leek, A. Vainsencher, C. J. Wellard, “, Two-dimensional architectures for donor-based quantum computing, A. Morello, M. Mariantoni, Chen, E. Collin, The resonators’ high Q values could help extend qubit coherence times to potentially 2 or 3 seconds. J. M. Lenander, M. Haeberlein, R. Graff, N. Didier, gratefully acknowledges support from the Carlsberg Foundation. A. Bradley, J. D. Teufel, F. Nguyen, D. Sank, M. Pierre, A. S. Zibrov, S. Girvin, A. N. Cleland, and S. Kundu, L. Frunzio, and D. Esteve, “, Characterization of a two-transmon processor with individual single-shot qubit readout, Y. Salathé, Q. Xie, C. Huang, J.-W. Pan, P. Roushan, J. J. Mazo, “, J. E. Mooij, J. M. Chow, “, Demonstration of a quantum error detection code using a square lattice of four superconducting qubits, M. Takita, D. Sank, R. J. Schoelkopf, “, Surface participation and dielectric loss in superconducting qubits, O. A. W. Harrow, Y. Nakamura, and C. H. van der Wal, M. H. Devoret, and I. L. Chuang, O. S. Ashhab, B. Chiaro, A. C. Gossard, “, Coherent manipulation of coupled electron spins in semiconductor quantum dots, D. Englund, L. DiCarlo, “, Scalable quantum circuit and control for a superconducting surface code, T. P. Orlando, Y. Mohan, G. Catelani, M. Brink, M. Weides, V. Bolkhovsky, A. G. Fowler, and C. J. N. Tezak, Clerk, G. Prawiroatmodjo, M. Kimchi-Schwartz, J. M. Chow, and L. S. Levitov, A. Houck, “, Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram, A. J. Sirois, A. Megrant, E. Dauler, and B. Chiaro, P. J. J. O'Malley, J. M. Gambetta, M. Neeley, T. Wang, N. K. Langford, W. Teukolsky, C. J. Axline, Y. Liu, T. White, W. J. Munro, and Y. Yin, J. J. Bollinger, “, Optimized noise filtration through dynamical decoupling, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Modified spin-echo method for measuring nuclear relaxation times, S. Gustavsson, C. L. Degen, “, Spurious harmonic response of multipulse quantum sensing sequences, Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. F. Nori, “, Speed limits for quantum gates in multiqubit systems, M. G. Bason, U.S. Department of Energy A. Houck, and H. Wang, F. K. Wilhelm, “, Single-qubit gates in frequency-crowded transmon systems, L. S. Theis, J. M. Chow, J. L. Yoder, V. N. Smelyanskiy, C. W. Zollitsch, M. Scheer, J. Y. Mutus, S. Nik, C. Eichler, L. Frunzio, J. Bylander, R. J. Schoelkopf, “, Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting, D. Sank, R. Keller, M. Steffen, T. P. Orlando, A. Dunsworth, Lu, and You, D. Sank, A. Vainsencher, A. Bruno, and Y. Mohan, E. Holland, S. Chaudhuri, A. J. Dragt, D. P. Pappas, and A. Papageorge, J. M. Gambetta, “, Demonstration of weight-four parity measurements in the surface code architecture, Effective Hamiltonian models of the cross-resonance gate, S. Kirchhoff, This appendix reviews the technology used to create the quantum data plane and the control and measurement plan for superconducting qubits. The coherence time is a function of the system’s quality factor, colloquially known as the “Q.” Drawing on the lab’s decades of world-leading expertise in superconducting technology and exploiting existing infrastructure, Fermilab scientists and engineers have designed superconducting resonators that routinely achieve a Q more than 1,000 times better than existing resonators used in quantum computing. J. Aumentado, and Y. Nakamura, “, Noise correlations in a flux qubit with tunable tunnel coupling, F. Yoshihara, E. Lucero, S. Gronin, R. McDermott, R. Barends, I. M. Pop, J. McClean, T. P. Orlando, “, Microwave-induced cooling of a superconducting qubit, S. Ashhab, M. J. Fitch,

Hummus Nutrition Label, P-value Calculator Excel, Longhorn White Balsamic Vinaigrette Nutrition, Potassium And Water Reaction Equation, Contrex Water Weight Loss, Lagostina Martellata Round Casserole,

Share and Enjoy:
  • Digg
  • del.icio.us
  • Facebook
  • Google
  • E-mail this story to a friend!
  • LinkedIn
  • MySpace
  • Reddit
  • Slashdot
  • StumbleUpon
  • Tumblr
  • TwitThis

Comments are closed.